
Construction Process Modeling:
Representing Activities, Items and their Interplay

Elisa Marengo∗, Werner Nutt∗, Matthias Perktold+

Faculty of Computer Science
Free University of Bozen-Bolzano, Italy
∗firstname.lastname@unibz.it

+matthias.perktold@hotmail.com

Abstract. General purpose process modeling approaches are meant to be appli-
cable to a wide range of domains. To achieve this result, their constructs need to
be general, thus failing in capturing the peculiarities of a particular application
domain. One aspect usually neglected is the representation of the items on which
activities are to be executed. As a consequence, the model is an approximation of
the real process, limiting its reliability and usefulness in particular domains.
We extend and formalize an existing declarative specification for process model-
ing mainly conceived for the construction domain. In our approach we model the
activities and the items on which the activities are performed, and consider both
of them in the specification of the flow of execution. We provide a formal seman-
tics in terms of LTL over finite traces which paves the way for the development
of automatic reasoning. In this respect, we investigate process model satisfiability
and develop an effective algorithm to check it.

Keywords: Multi-instance Process Modeling · Satisfiability Checking of a Process
Model · Construction Processes

1 Introduction

Process modeling has been widely investigated in the literature, resulting in approaches
such as BPMN, Petri Nets, activity diagrams and data centric approaches. Among the
known shortcomings of these approaches: i) they need to be general in order to accom-
modate a variety of domains, inevitably failing in capturing all the peculiarities of a spe-
cific application domain [3,9,12]; ii) they predominantly focus on one aspect between
control flow and data, neglecting the interplay between the two [5]; iii) process instances
are considered in isolation, disregarding possible interactions among them [1,16].

As a result, a process model is just an abstraction of a real process, limiting its
applicability and usefulness in some application domains. This is particularly the case in
application domains characterized by multiple-instance and item-dependent processes.
We identify as multiple-instance those processes where several process instances may
run in parallel on different items, but their execution cannot be considered in isolation,
for instance because there are synchronization points among the instances or because
there are limited resources for the process execution. With item-dependent we identify



2

those processes where activities are executed several times but on different items (that
potentially differ from activity to activity) and items are different one from the other.

The need of properly addressing multiple-instance and item-dependent processes
emerged clearly in the context of some research projects [4,6] in the construction do-
main. In this context, a process model serves as a synchronization mean and coordi-
nation agreement between the different companies simultaneously present on-site. Be-
sides defining the activities to be executed and the dependencies among them, aspects
that can be expressed by most of the existing modeling languages, there is the need
of specifying for each activity the items on which it has to be executed, where items
in the construction domain correspond to locations. In this sense, processes are item-
dependent. Processes are also multi-instance since high parallelism in executing the
activities is possible but there is the need to synchronize their execution on the items
(e.g, to regulate the execution of two activities in the same location). The aim is not only
to model these aspects, but also to provide (automatic) tools to support the modeling
and the execution. This requires a model to rely on a formal semantics.

In this paper we address the problem of multi-instance and item-dependent process
modeling, specifically how to specify the items on which activities are to be executed
and how the control flow can be refined to account for them. Rather than defining “yet
another language”, we start from an existing informal language that has been defined
in collaboration with construction companies and tested on-site [4,19] in a construction
project (Fig. 1). We refined it by taking inspiration from Declare [2], and propose a for-
mal semantics grounded on Linear Temporal Logic (LTL) where formulas are evaluated
over finite traces [8].

Concerning the development of automatic tools, we propose an algorithm for satis-
fiability checking, defined as the problem of checking whether, given a process model,
there is at least one execution satisfying it. Satisfiability is a prerequisite for the de-
velopment of further automatic reasoning, such as the generation of (optimized) exe-
cutions compliant to the model. We also developed a web-based prototype acting as a
proof-of-concept for graphical process modeling and satisfiability checking [21]. The
developed language and technique can be generalized to other application domains such
as manufacturing-as-a-service [17], infrastructure, ship building and to multi-instance
domains [16] such as transport/logistic, health care, security, and energy.

The paper presents the related work in Section 2, a formalization for process models
and for the modeling language in Section 3, an excerpt of a real construction process
model [7] in Section 4, the satisfiability problem in Section 5, and our algorithm and an
implementation to check it in Section 5.2.

2 Related Work

The role of processes in construction is to coordinate the work of a number of compa-
nies simultaneously present on-site, that have to perform different kinds of work (ac-
tivities) in shared locations (items). Coordination should be such that workers do not
obstruct each other and such that the prerequisites for a crew to perform its work are
all satisfied when it has to start. For example, in the construction of a hotel it should be
possible to express that wooden and aluminum windows must be installed respectively



3

in the rooms and in the bathrooms, and that in the rooms the floor must be installed
before the windows (not to damage them).

The adoption of IT-tools in construction is lower compared to other industries, such
as manufacturing [15]. The traditional and most adopted techniques are the Critical Path
Method (CPM) and the Program Evaluation and Review Technique (PERT). They con-
sider the activities as work to be performed, focusing on their duration and the overall
duration of a schedule. However, they do not account for the locations where to execute
the activities and the location-based relationships between them [14]. As a result, a pro-
cess representation abstracts from important details causing [22]: i) the communication
among the companies to be sloppy, possibly resulting in different interpretations of a
model; ii) difficulties in managing the variance in the schedule and resources; iii) im-
precise activity duration estimates (based on lags and float in CPM and on probability
in PERT); iv) inaccurate duration estimates not depending on the quantity of work to
be performed in a location and not accounting for the expected productivity there. As
a result, project schedules are defined to satisfy customer or contractual requirements,
but are rarely used during the execution for process control [14].

Gantt charts are a graphical tool for scheduling in project management. Being graph-
ical they are intuitive and naturally support the visualization of task duration and prece-
dences among them. However, a Gantt chart already represents a commitment to one
particular schedule, without necessarily relying on a process model. A process model
explicitly captures the requirements for the allowed executions, thus supporting a more
flexible approach: in case of delay or unforeseen events any re-schedule which satisfies
the model is a possible one. Besides this limitation, Gantt charts are general-purpose
and when applied to construction fail in naturally representing locations (which conse-
quently are also not supported by IT-tools such as Microsoft Project) and have a limited
representation of the precedences (only constraining two tasks, rather than, for instance,
specifying constraints for tasks by floor or by room and so on). Flow-line diagrams are
also a visual approach for process schedules, which explicitly represent locations and
production rates. However, they also do not rely on an explicit process model. More
recently, BIM-based tools have been developed. They are powerful but also require a
big effort and dedicated resources to use the tool and align a BIM model with the con-
struction site [10]. These aspects limit their use by small/medium sized companies.

From the business process literature one finds the standard BPMN. Its notation sup-
ports the representation of multi-instance activities and of data objects. However, the
connection between the control flow and the data object is under-specified [5]: items and
their role in ruling the control flow are not expressed explicitly. Other approaches [1,3]
consider both the flow and the data and the process instances can synchronize via the
data objects. The Instance Spanning Constraints [16] approach considers multiple in-
stances and the constraints among them. To the best of our knowledge, none of these
approaches has been applied to execution processes in construction (note that [3] has
been applied to construction but not to the execution process, which requires to account
for higher level of details). Their adoption would require adaptations and extensions,
such as representation of the items and considering them in the execution flow. Similar
considerations hold for Declare [2], although it supports a variety of constraint types.



4

Fig. 1. Process Modeling Workshop with Construction Companies and the Resulting Model.

In the context of a research [4] and a construction project [19], a new approach for
a detailed modeling and management of construction processes was developed in col-
laboration with a company responsible for facade construction. An ad-hoc and informal
modeling language was defined, with the aim of specifying the synchronization of the
companies on-site and used as a starting point for the daily scheduling of the activities.
To this aim, both activities and locations had to be represented explicitly. The process
model of the construction project, depicted in Figure 1, was defined collaboratively by
the companies participating in the project and was sketched on whiteboards. The re-
sulting process allowed the companies to discuss in advance potential problems and to
more efficiently schedule the work. The benefit was estimated in a 8% saving of the
man hours originally planned and some synchronization problems (e.g., in the use of
the shared crane) were discovered in advance and corresponding delays were avoided.

By applying the approach in the construction project some requirements emerged,
mainly related to the ambiguity of the language (which required additional knowledge
and disambiguations provided as annotations in natural language). The main require-
ments were: i) besides the activities to be performed, also the locations where to execute
them need to be represented in a structured and consistent way; ii) to capture the de-
sired synchronization, the specification of the flow of execution must be refined, so that
not only activities are considered, but also the locations. For instance, when defining a
precedence constraint between two activities it must be clear whether it means that the
first must be finished everywhere before the second can start, or whether the precedence
applies at a particular location i.e. floor, room and so on; iii) the representation of more
details complicates the process management, which would benefit from the develop-
ment of (automatic) IT supporting tools. In the next section we provide a formalization
for process modeling in construction, paving the way for automatic tool development.

3 Multi-Instance and Item-Dependent Process Modeling

Our formalism foresees two components for a process model: a configuration part,
defining the possible activities and items, and a flow part, specifying which activity
is executed on which item, and the constraints on the execution. We illustrate these
parts for the construction domain, although the formalization is domain-independent.
As an example, we use an excerpt of a real process for a hotel construction [7].



5

3.1 Process Model

In this section we describe the two components of a process model.
Configuration part. The configuration part defines a set of activities (e.g., excavation,
lay floor) and the items on which activities can be performed (e.g., locations).

For the item representation, we foresee a hierarchical structure where the elements
of the hierarchy are the attributes and for each of them we define a range of possible
values. The attributes to consider depend on the domain. In construction a possible hi-
erarchy to represent the locations is depicted in Figure 2, and the attributes are: i) sector
(sr), which represents an area of the construction site such as a separate building (as
possible values we consider B1 and B2); ii) level (l), with values underground (u1),
zero (f0) and one (f1); iii) section (sn), which specifies the technological content of an
area (as possible values we consider room r, bathroom b, corridor c and entrance e);
and iv) unit (u), which enumerates locations of similar type (we use it to enumerate
the hotel rooms from one to four). Other attributes could be considered, such as wall,
with values north, south, east and west, to identify the walls within a section (which is
important when modeling activities such as cabling and piping). The domain values of
an attribute can be ordered, for instance to represent an ascending order on the levels
(u1<f0<f1). We call item structure a hierarchy of attributes representing an item.

In process models, e.g. in manufacturing and construction, it is common to con-
ceptually divide a process into phases, where the activities to be performed and the
item structure may be different. Common phases in construction are the skeleton and
interior, requiring respectively a coarser representation of the locations and a more fine-
grained. Accordingly, in Figure 2, an item for the skeleton phase is described in terms
of sector and level only, with sector B1 having three levels and sector B2 only two. To
express this, we define for each phase the item structure, as a tuple of attributes, and a
set of item values defining the allowed values for the items. Accordingly, the item struc-
ture for the skeleton phase is 〈sector, level〉 and the possible values for sector B1 are
〈B1, u1〉,〈B1, f0〉,〈B1, f1〉, while for B2 they are 〈B2, u1〉,〈B2, f0〉. Thus, an item is a
sequence of values indexed by the attributes. For the interior item values see Figure 2.

More formally, a configuration C is a tuple 〈At, P 〉, where: i) At is the set of at-
tributes each of the form 〈α,Σα, α↑〉, where α is the attribute name, Σα is the domain
of possible values, and α↑ is a linear total order over Σα (for simplicity, we assume
all attributes to be ordered); ii) P is a set of phases, each of the form 〈Ac, Is, Iv〉,
where Ac is a set of activities; Is = 〈α1, ..., αn〉 is the item structure for the phase and
Iv ⊆ Σα1

× ...×Σαn
is the set of item values.

Flow part. Based on the activities and on the items specified in the configuration part,
the flow part specifies on which items the activities must be executed, for instance to ex-
press that in all levels of each sector, ‘wooden window installation’ must be performed
in all rooms, while ‘aluminum window installation’ in the bathrooms. We call task an
activity a on a set of items I , represented as 〈a, I〉, where I is a subset of the possible
item values for the activity’s phase. We use 〈a,i〉 for an activity on one item i.

Additionally, a process model must define ordering constraints on the execution of
the activities. For instance, one may want to specify that the construction of the walls
proceeds from bottom to top or that the floor must be installed before the windows.
In the original language, the ordering constraints were declarative, i.e., not expressing



6

Sector
(sr)

Level
(l)

Section
(sn)

Unit
(u)

Interior 
Item Structure

Attributes

B1, B2

u1,f0,f1
(u1<f0<f1)

r,b,c,e

1,2,3,4

Domain Values

B2

u1

...

f0

b

1

r

1 ... 4

B1

u1

...

f0

b

1

r

1 ... 4

f1

...

Interior Item Values

Level f1

Sector B1

Sector B2

Level f0

Level u1

Level f0

Level u1

Level f0

Room 1

Room 2

Room 3

Room 4

Bath
Room

Sector B2

Building

Skeleton
Item Structure

Fig. 2. Representation of the items in the hotel case study.

strict sequences but constraints to be satisfied. By representing the items on which ac-
tivities are performed in a structured way, it is possible to specify the scope at which a
precedence between two tasks applies, that is to say whether: i) one task must be fin-
ished on all items before progressing with the other; or ii) once a task is finished on an
item, the other can be performed on the same item (e.g. once the floor is installed in a
room, the installation of the windows can start in that room); or iii) the precedence ap-
plies to groups of items (e.g. once the floor is laid everywhere at one level, the windows
can be installed at that level). This level of detail was one of the identified requirements
(Section 2). In the original language from which this approach started, indeed, the scope
of precedences was provided as disambiguation notes in natural language.

In Section 3.2 we describe our extension of the language and provide a formal se-
mantics in terms of LTL over finite traces. Formally, a flow part F is a tuple 〈T,D〉,
where T and D are sets of tasks and dependencies.

3.2 A Formal Language for Constraint Specification

In this section we define a language to support the definition of dependencies on task
execution, i.e. the process flow. We consider a task execution to have a duration. So,
for a task 〈a,i〉 we represent its execution in terms of a start (start(a,i)) and an end
(end(a,i)) event. An execution is then a sequence of states, each of which is defined as
the set of start and end events for different tasks, that occurred simultaneously.

Our language defines a number of constructs for the specification of execution and
ordering constraints on task execution. For each construct we provide an LTL formula 1

which captures the desired behavior by constraining the occurrence of the start and end
events for the activities on the items. For instance, to express a precedence constraint
between two tasks, the formula requires the end of the first task to occur before the start
of the second. For each of them we also propose a graphical representation meant to
support an overall view of the flow part. Figure 3 shows an excerpt of the flow part for

1 In LTL, �a, ♦a and©a mean that condition a must be satisfied i) always, ii) eventually in
the future, and iii) in the next state. Formula a U b requires condition a to be true until b.



7

Task	ID
#crews	x
#workers Duration Craft

Activity

Ordering
Constraint

Exclusive
Constraint

Locations

Task	and	Dependency	Representation

Precedence

Alternate Precedence

Chain Precedence

Fig. 3. Excerpt of the process model for the hotel case study. (The * denotes all possible values
for the attribute).

our motivating scenario. Intuitively, each box is a task where the color represents the
phase, the label the activity and the bottom matrix the items. The columns of the matrix
are the item values and the rows are the attributes of the item structure. Arrows between
the boxes represent binary dependencies among the tasks and can be of different kinds.
The language and its graphical representation are inspired by Declare [2].

Execute. As described previously, the flow part specifies a set of tasks which need to be
executed. This is captured by specifying an execute dependency executes(t), for each
task of the flow part. It is graphically represented by drawing a box and formally an
executes(t) constraint for t = 〈a, I〉 is defined as:

∀i ∈ I ♦ start(a,i)

Ordered execution. In some cases it is necessary to specify an order on the execution
of an activity on a set of items, for instance, to express that the concrete must be poured
from the bottom level to the top one. To express this requirement we define the ordered
execution construct having the form ordered execution(〈a, I〉,O). This constraint spec-
ifies that the activity ‘a’ must be executed on all items in I following the order specified
in O. We express O as a tuple of the form 〈α1o1, ..., αmom〉 where αi is an attribute
and oi is an ordering operator among ↑ or ↓. The expression αi↑ refers to the linear
total order of the domain of α (defined in the configuration), while αi↓ refers to its in-
verse. Given the set of items I , these are ordered according to O in the following way.
The items are partitioned so that the items with the same value for α1 are in the same
partition set. The resulting partition sets are ordered according to α1o1. Then, each par-
tition set is further partitioned according to α2 and each resulting partition set is ordered
according to α2o2, and so on for the remaining operators. This iterative way of parti-
tioning and ordering defines the ordering relation <O,I , based on which precedence
constraints are defined to order the execution of the activity a on the items.

As an example, consider the task Concrete Pouring (CP) in Figure 3. To specify
that it must be performed from bottom to top, we graphically use the label <:l↑, which



8

corresponds to the constraint ordered execution(〈CP, I〉,l↑), meaning that the items I
are partitioned according to their values for the level (regardless of the sector), and then
ordered. As a result, the activity must be performed at level u1 before progressing to f0
(and then f1). Formally, a constraint ordered execution(〈a, I〉,O) is:

executes(〈a, I〉) and ∀〈i1,i2〉 ∈<O,I precedes(〈a, {i1}〉, 〈a, {i2}〉)

Precedes (auxiliary construct). The formula above relies on the precedes(〈a, Ia〉, 〈b, Ib〉),
auxiliary construct which requires an activity a to be executed on a set of items Ia before
an activity b (potentially the same) is performed on any item in Ib. Formally:

∀ia ∈ Ia,ib ∈ Ib ¬start(b,ib) U end(a,ia)

Not interrupt (auxiliary construct). Another requirement is the possibility to express
that the execution of an activity on a set of items is not interrupted by other activities.
For instance, to express that once the lay floor activity starts at one level in one sec-
tor, no other task can be performed at the same level and sector, we have to express
that the execution of the task on a group of items must not be interrupted, and that
we group and compare the items by considering their values for sector and level only
(abstracting from section and unit). To this aim, we introduce the auxiliary construct
not interrupt(T1, T2) which applies to sets of tasks T1 and T2 and specifies that the
two sets of tasks cannot interrupt each other: either all tasks in T1 are performed be-
fore the tasks in T2 or the other way around (we consider sets of tasks because this
will be useful later in the definition of the alternate precedence constraint). Formally,
not interrupt(T1, T2) is defined as:

∀t1 ∈ T1, t2 ∈ T2 precedes(t1, t2) or ∀t1 ∈ T1, t2 ∈ T2 precedes(t2, t1)

Projection Operator. To compare two items by considering only some of the attributes
of their item structure, we introduce the concept of scope. The scope is a sequence of
attributes used to compare two items. For instance, given a scope s = 〈sector, level〉,
we can say that the items 〈B1, f1, room, 1〉 and 〈B1, f1, bathroom, 1〉 are equal under s.
In this case, we say that the two items are at the same scope. For the comparison, we
define the projection operator to project an item on the attributes in the scope.

Definition 1 (Projection Operator Πs). Given an item i = 〈v1, .., vn〉 and a scope
s = 〈αj1 , .., αjm〉, the projection of i on s is Πs(i) = 〈vj1 , .., vjm〉 with vjh = αjh(i).

This means, in particular, that for the empty scope s = 〈〉, we have Π〈〉(i) = 〈〉,
and thus ∀i,i′ Π〈〉(i) = Π〈〉(i

′). When applied to a set of items I , the result of the
projection operator with scope s is the set (without duplicates), obtained by applying
the projection operator to every item i ∈ I . In other words, it is the set of possible
values for the attributes in s, w.r.t. the items in I .

Exclusive execution. An exclusive execution constraint exclusive execution(〈a, Ia〉, s)
expresses that once an activity is executed on an item at scope s, no other activity can
be performed on items at the same scope. Formally, the task has to be executed and for
every other task having an item at scope s, the two tasks must not interrupt each other.



9

For a scope s = 〈αj1 , .., αjm〉, let πs = 〈vj1 , .., vjm〉 be a tuple of values for the
attributes in s. We use the selector operator σπs(I) to select the items in I having the
values specified in πs for the attributes s . Formally, exclusive execution(〈a, Ia〉, s) is:

executes(〈a, Ia〉) and ∀〈b, Ib〉 ∈ T and 〈b, Ib〉 6= 〈a, Ia〉,
∀πs ∈ Πs(Ia),∀ib ∈ σπs(Ib)

2 not interrupt({〈a, σπs(Ia)}〉, {〈b, {ib}〉})

As a special case, when s = 〈〉 the execution of the entire task cannot be interrupted. By
default, tasks have an exclusive constraint at the finest-granularity level for the items,
i.e. two activities cannot be executed at the same time on the same item.

An exclusive execute constraint (except the default at the item scope) is represented
with a double border box and the scope is specified in the slot labeled with ex. In Fig-
ure 3, lay floor has an exclusive execution constraint ex:(sr,l) for sector and level.

We now introduce binary dependencies that specify ordering constraints between
pairs of tasks. By representing also the items, we can specify precedences at different
scopes: i) task (a task must be finished on all items before the second task can start);
ii) item scope (once the first task is finished on an item, the second task can start on the
item); iii) between items at the same scope (e.g. a task must be performed in all loca-
tions of a floor before another task can start on the same floor). This is visualized by
annotating a binary dependency (an arrow) with the sequence of attributes representing
the scope. When no label is provided, the task scope is meant. In Figure 3, the depen-
dency between concrete pouring and lay floor is at task level, while the one between
lay floor and wooden window installation is labeled with sr,l, to represent the scope
〈sector, level〉: given a sector and a level, the activity lay floor must be done in every
section and unit before wooden windows installation can start in that sector at that level.

Precedence. A precedence dependency precedence(〈a, Ia〉, 〈b, Ib〉, s) expresses that an
activity a must be performed on a set of items Ia before an activity b starts on items Ib.
The scope s defines whether this applies at the task, item, or item group.

∀πs ∈ Πs(Ia) ∩Πs(Ib) precedes(〈a, σπs(Ia)〉, 〈b, σπs(Ib)〉)

The formula above expresses that for the items at the same scope in Ia and Ib, activity
a must be executed there before activity b. If s = 〈〉 activity a must be performed on all
its items before activity b can start (task scope).

Alternate precedence. Let us consider the example of the scaffolding installation and
the concrete pouring: once the scaffolding is installed at one level, the concrete must
be poured at that level before the scaffolding can be installed to the next level. This
alternation is captured by the dependency alternate(〈a, Ia〉, 〈b, Ib〉, s), which is in the
first place a precedence constraint between a and b. It also requires that once a is started
on a group of items at a scope (σπs(Ia)), then b must be performed on its items at the
same scope (σπs(Ib)), before a can progress on items at a different scope (σπ′

s
(Ia)):

2 The result of Πs(Ia) is the set of possible values for the attributes in s considering Ia. For each
of them we select the items in Ib that are at the same scope, and we apply the not interrupt.



10

precedence(〈a, Ia〉, 〈b, Ib〉, s) and ∀πs, π′s ∈ Πs(Ia) ∩Πs(Ib), πs 6= π′s
3

not interrupt({〈a, σπs(Ia)〉, 〈b, σπs(Ib)〉}, {〈a, σπ′
s
(Ia)〉, 〈b, σπ′

s
(Ib)〉})

Graphically, an alternate precedence is represented as an arrow (to capture the prece-
dence), and an X as a source symbol, to capture that the source task cannot progress
freely, but it has to wait for the target task to be completed on items at the same scope.

Chain precedence. Finally, let us consider the case in which the execution of two tasks
must not be interrupted by other tasks on items at the same scope. For instance, the tasks
excavation and secure area must be performed one after the other and no other tasks
can be performed in between for each sector. Note that the dependency types defined
before declaratively specify an order on the execution of two tasks but do not prevent
other tasks to be performed in-between. To forbid this we define the chain precedence
dependency chain(〈a, Ia〉, 〈b, Ib〉, s), which, as the alternate precedence, builds on top
of a precedence dependency. Additionally, it requires that the execution of the two tasks
on items at the same scope is not interrupted by other tasks executing on items at the
same scope. The formula considers all tasks different from t1 = 〈a, Ia〉 and t2 = 〈b, Ib〉
sharing items at the same scope. For this it specifies a not interrupt constraint. Formally,

precedence(〈a, Ia〉, 〈b, Ib〉, s) and ∀πs ∈ Πs(Ia) ∩Πs(Ib),
∀ t3 = 〈c, Ic〉 ∈ T, s.t. t3 6= t1 and t3 6= t2

∀i ∈ σπs(Ic) not interrupt({〈c, {i}〉}, {〈a, σπs(Ia)〉, 〈b, σπs(Ib)〉})

Graphically, it is represented as a double border arrow.

4 Process Modeling for the Hotel Scenario

The model of the hotel case study consists of roughly fifty tasks. Figure 3 reports an
excerpt showing some activities of the skeleton (blue) and interior phases (green). The
item structure for the skeleton phase is defined in terms of sector sr and level l, while
the interior consists of sector, level, section sn, and unit number u (see Figure 2).

The task EXCAVATION belongs to the skeleton phase and must be performed on sec-
tors B1 and B2, in both cases at the underground level u1. The activity SECURE AREA
must also be performed in both sectors, but at the underground and ground floor f0.
For security reasons, once the excavation is finished in one sector, the area must be
secured for that sector before any other task can start. This is expressed with a chain
precedence dependency at scope sr (sector), graphically represented as double bordered
arrow. Additionally, while performing the activities, their execution in a sector cannot
be interrupted by other activities. This is expressed with an exclusive execution at scope
sector (ex: sr) for both tasks, represented as double border box.

Only after the area has been secured everywhere, the CONCRETE POURING can
start. This is expressed with a precedence at the task scope (graphically an arrow with-
out label). The concrete can be poured proceeding from the bottom to the top floor, cap-
tured by an ordered constraint (<: l ↑). Note that this task has an exclusive constraint

3 The projection operator is applied to Ia and Ib and only projections πs and π′s that are in
common are considered. For every distinct πs and π′s either a and b are performed on items at
scope πs without being interrupted by executing a and b on items at scope π′s, or vice versa.



11

ex: UNIT, i.e. an exclusive constraint at the finest granularity level, which expresses
that two activities cannot be performed simultaneously on the same item. For all tasks
the same exclusive execution at the item scope is assumed and it is not graphically high-
lighted. It is represented with a double border box when a coarser scope is specified.

Once the concrete has been poured at the underground level of one sector, the pipes
for the water can be connected before the excavation is filled, and after this the task
SCAFFOLDING INSTALLATION can start, proceeding from the bottom to the top. Once
the scaffolding is installed at one level, the concrete must be poured at that level, in order
to be able to install the scaffolding for the next level. This requirement is expressed by
the alternate precedence at scope sr, l (graphically, with an arrow starting with an X).

When the concrete pouring task is finished everywhere, the lay floor task can start
(which belongs to the interior phase). This task must be performed before the installa-
tion of the wooden windows, which is foreseen in all rooms, so not to damage them.
This is captured by the precedence constraint between LAY FLOOR and WOODEN
WINDOW INSTALLATION at scope sr, l. To be more efficient, the lay floor task has an
exclusive execution constraint at scope sr, l. Since aluminum windows are less delicate
than wooden ones, their installation does not depend on the lay floor task.

To support the graphical definition of a process flow, we implemented a web-based
prototype [21] (see the master’s thesis [20]), which we used to produce Figure 3. The
prototype and the graphical language support the overall view of a process model.

5 Satisfiability Checking

When developing a tool requiring inputs from the user, one cannot assume that the pro-
vided input will be meaningful. Specifically, one cannot assume that a given model is
satisfiable, that is there exists at least one execution satisfying it. Relying on LTL se-
mantics would allow us to perform the check using model checking techniques. How-
ever, as reported in the experiment description (Section 5.2) this takes more than 2 min-
utes for a satisfiable model with 8 tasks and 9 dependencies. In this section, we describe
a more effective algorithm and its performance evaluation by means of experiments.

5.1 How to Check for Satisfiability

An execution is a sequence of states defined in terms of start and end events.

Definition 2 (Execution). Let E be the set of start and end events for the tasks of a
process model. A process execution ρ of length n is a function ρ : {1, .., n} → 2E .

There are some properties of interest that an execution is expected to satisfy in real-
ity: i) start-end order: a start event is always followed by an end event; ii) non-repeti-
tion: an activity cannot be executed more than once on the same item, and start and end
events never repeat; iii) non-concurrence: at most one task at a time can be performed
on an item. All these properties can be expressed in LTL.4 We say that an execution ρ
is a well-defined execution if and only if it satisfies all of these three properties.

4 start-end order: �(start(a,i)→©♦end(a,i));
non-repetition: �(start(a,i)→©�¬start(a,i))∧ �(end(a,i)→©�¬end(a,i));
non-concurrence: �(start(a,i)→¬start(a′,i) U end(a,i)), where a 6= a′.



12

Definition 3 (Possible Execution). A well-defined execution ρ is a possible execution
for a process model if and only if

i) all events occurring in ρ are of activities and items of the configuration part;
ii) for all tasks 〈a, I〉 in the flow part, the task 〈a,i〉 is executed in ρ for all i ∈ I;

iii) ρ satisfies all the ordering constraints specified in the flow part.

The observation underlying the algorithm that checks statisfiability is that, since all
our dependencies relate the end of a task with the start of another one (end-to-start), it
holds that if there is a possible execution, then there is one where all activities on an
item are atomic, that is, each start event is immediately followed by the corresponding
end event. Moreover, if there is such an execution, then there even exists a sequential
one where no atomic activities take place at the same time. Therefore, it is sufficient to
check for the existence of sequential executions of atomic activities.

The algorithm relies on an auxiliary structure that we call activity-item (AI) graph.
Intuitively, in an AI-graph we represent each activity to be performed on an item as a
node 〈a,i〉, conceptually representing the execution of a on i. Ordering constraints are
then represented as arcs in the graph. This allows us to characterize the satisfiability of
a model by the absence of loops in the corresponding AI graph.

Let us first consider P-models, which are process models with precedence and or-
dering constraints only. Given a P-modelM, we denote the corresponding AI-graph as
GM = 〈V,A〉, where for each task t = 〈a, I〉 in the flow part and for each item i ∈ I
there is an AI node 〈a,i〉 ∈ V , without duplicates; for each precedence and ordering
constraint we introduce a number of arcs in A among AI nodes in V . For instance, a
precedence constraint between two tasks at the task scope is translated into a set of arcs,
linking each AI node corresponding to the source task to each AI node corresponding to
the target task. A precedence constraint at the item scope is translated into arcs between
AI nodes of the two activities on the same items.

Theorem 1. A P-modelM is satisfiable iff the graph GM is cycle-free.

Proof (Idea). If GM does not contain cycles, the nodes can be topologically ordered and
the order is a well-defined execution satisfying all ordering constraints inM. A cycle in
GM corresponds to a mutual precedence between two AI nodes, which is unsatisfiable.

We now consider general models, called G-models, where all types of dependency
are allowed. First, let us consider an exclusive constraint exclusive execution(〈a, Ia〉, s).
It requires for each scope πs ∈ Πs(Ia), that the execution of a on the items in the
set σπs(Ia) is not interrupted by the execution of other activities at the same scope.
Considering an activity b to be executed on an item ib at the same scope (i.e.,Πs(ib) =
πs), the exclusive constraint is not violated if the execution of b occurs before or after
the execution of a on all items in σπs(Ia). We call exclusive group a group of AI nodes,
whose execution must not be interrupted by another node. We connect this node and
the exclusive group with an undirected edge, since the execution of the node is allowed
either before or after the exclusive group. Then, we look for an orientation of this edge,
such that it does not conflict with other constraints, i.e., it does not introduce cycles.
With chain and alternate precedences, we deal in a similar way. Indeed, both require
that the execution of two tasks on a set of items is not interrupted by other activities
(chain) or by the same activity on other items (alternate).



13

To represent a not interrupt constraint in a graph we introduce disjunctive activity-
item graphs (DAI-graphs) inspired by [11]. Given a G-model M, the corresponding
DAI-graph is DM = 〈V,A,X,E〉, where 〈V,A〉 are defined as in the AI-graph of
a P-model,5 X ⊆ 2V is the set of exclusive groups, and E ⊆ V × X is a set of
undirected edges, called disjunctive edges, connecting single nodes to exclusive groups.
A disjunctive edge can be oriented either by creating arcs from the single node to each
node in the exclusive group or vice versa, so that all arcs go in the same direction
(i.e., either outgoing from or incoming to the single node). An orientation of a DAI-
graph is a graph that is obtained by choosing an orientation for each edge. We say that a
disjunctive graph is orientable if and only if there is an acyclic orientation of the graph.

Theorem 2. A G-modelM is satisfiable iff the DAI-graph DM is orientable.

Proof (Idea). If DM is orientable, there exist a corresponding acyclic oriented graph.
Then, there exists a well-defined execution satisfying all precedence constraints (see
Theorem 1). The non interrupt constraints are satisfied by construction of DM. If DM
is not orientable, a topological order satisfying all the constrains does not exist (see [20]).

5.2 An Implementation for Satisfiability Checking

Algorithm. To check for the orientability of a DAI-graph DM = 〈V,A,X,E〉 we
develop an algorithm that is based on the following observations.

Cycles. If the graph GM = 〈V,A〉 contains a cycle, then DM is not orientable.
Simple edges. Disjunctive edges where both sides consist of a single node, called sim-

ple edges, can be oriented so that they do not introduce cycles (see the thesis [20]).
Resolving. Consider an undirected edge between a node u and an exclusive set of

nodes S ∈ X . If there is a directed path from u to a node v ∈ S (or the other
way around), then there is only one way to orient the undirected edge between
v and S without introducing cycles. We call this operation resolving.

Partitioning. Sometimes, one can partition a DAI-graphDM into DAI-subgraphs such
thatDM is orientable if and only if each of these DAI-subgraph is orientable. Then
each such subgraph can be checked independently.

Let us discuss the partitioning operation in more detail. GivenDM = 〈V,A,X,E〉,
we are looking for a partition of the node set V into disjoint subsets, the partition sets,
satisfying two conditions: i) nodes of an exclusive group belong all to the same sub-
set; ii) there are no cycles among the subsets, that is, by abstracting each subset to a
single node and preserving the arcs connecting different subsets, there is no subset that
can be reached from itself. It is possible to prove for such partitions that the original
DAI-graph is orientable if and only if each partition set, considered as a DAI-graph, is
orientable [20]. Intuitively, if the partition sets do not form a cycle, then they can be
topologically ordered, and the AI nodes in each partition set can be executed respecting
the order. Since an exclusive group is entirely contained in one partition set, execution
according to a topological order also satisfies the exclusive constraint.

5 Including also the directed arcs to represent the precedence constraints of the chain and alter-
nate dependencies (see the formalization in Section 3.2)



14

To obtain such a partition, we temporarily add for each pair of nodes in an exclusive
group two auxiliary arcs, connecting them in both directions. Then we compute the
strongly connected components (SCCs) of the extended graph and consider each of
them as a partition set. (It may be that there is only one of them.) After that we drop the
auxiliary arcs. This construction ensures that i) an exclusive group is entirely contained
in a SCC; and ii) there are no cycles among the partition sets because a cycle would
cause the nodes to belong to the same partition set.

Below we list our boolean procedure SAT that takes as input a DAI-graph D and
returns “true” iff D is orientable. It calls the subprocedure NDSAT that chooses a dis-
junctive edge and tries out its possible orientations.

procedure SAT(D)
drop all simple edges in D
resolve all orientable disjunctive edges in D
if D contains a cycle then

return false
else partition D, say into D1, . . . ,Dn

if NDSAT(Di) = true for all i ∈ {1, . . . , n} then
return true

else return false

procedure NDSAT(D)
if D has a disjunctive edge e then

orient e in the two possible ways, resulting in D+, D−
return SAT(D+) or SAT(D−)

else return true

SAT itself performs only deterministic steps that simplify the input, discover un-
satisfiability, or divide the original problem into independent subproblems. After that
NDSAT performs the non-deterministic orientation of a disjunctive edge. Since the calls
to NDSAT at the end of SAT are all independent, they can be run in parallel.

Experiments. We ran our experiments on a desktop PC with eight cores Intel i7-4770
of 3.40 GHz. We tested the performance of NuSMV, a state-of-the-art model checker,
on a process model similar to the one reported in Figure 3, consisting of 8 tasks and 9
dependencies, resulting in a DAI-graph of 236 nodes. The NuSMV model checker with
Bounded Model Checking took 2 min 35 sec on a satisfiable model. We also considered
different inconsistency scenarios: i) a DAI-graph with a cycle ii) an acyclic DAI graph
that is non-orientable; iii) a DAI-graph similar to case ii), but with an increased number
of nodes. On all these unsatisfiable cases, we aborted the check if exceeding 1 hour.

We implemented our algorithm in Java and tested it on the same variants of the
hotel scenario on which we tested the model checker. The results are reported in Table 1
(top). As can be seen, the implementation outperforms the NuSMV model checker both
in the satisfiable and unsatisfiable variants. In order to understand the performance of
the implementation w.r.t. the model size, we performed some experiments by increasing
the number of tasks and dependencies in the non-orientable variant of the model. We
chose this variant because it is the most challenging for the algorithm, which has to
find a partition and non-deterministically chose an orientation for the undirected edges.



15

Model Tasks Dependencies Nodes Arcs Edges Time (ms)
satisfiable 8 9 236 9415 524 27
cyclic 8 9 236 10003 521 5
non-orientable 12 14 244 9435 574 10
non-orientable 12 14 424 15131 1740 23

non-orientable

60 75 2,120 76,103 10,635 598
120 173 4,240 168,681 42,470 1,189
180 296 6,360 361,969 95,505 3,682
300 623 10,600 674,584 265,175 14,199
360 822 12,720 948,099 381,810 24,223
480 1,291 16,960 1,436,759 678,680 55,866
720 2,562 25,440 3,082,925 1,526,820 379,409
960 4,187 33,920 5,217,426 2,714,160 OOM

Table 1. Experimental results.

The results are shown in Table 1 (bottom). On a model of 180 tasks, which we believe
represents an average real case scenario, the performances are still acceptable (around
4 seconds). The implementation took around 1 minute on a model of 480 tasks, which
is acceptable for an offline check. It ran out of memory (OOM) on a model of 960
tasks (too many for most of real cases). More details on the experiments are reported
in the thesis [20]. The web-based prototype [21] that we developed implements the
satisfiability checking and the export of the NuSMV file of a process model.

6 Conclusions and Future Work

This work presents an approach for process modeling that represents activities, items
and accounts for both of them in the control flow specification. We investigate the prob-
lem of satisfiability of a model and develop an effective algorithm to check it. The
algorithm has been implemented in a proof-of-concept prototype that also supports the
graphical definition of a process model [21,18].

The motivation for developing a formal approach for process modeling emerged in
the application of non-formal models in real projects [4,19], which resulted in improve-
ments and cost savings in construction process execution. This opens the way for the
development of automatic tools to support construction process management. In this
paper we presented the statisfiability checking, starting from which we are currently in-
vestigating the automatic generation of process schedules, optimal w.r.t. some criteria of
interest (e.g., costs, duration). To this aim we are investigating the adoption of constraint
satisfaction and (multi-objective) optimization techniques. We are also investigating the
use of Petri Nets for planning [13]. We will apply modeling and automatic scheduling
to real construction projects in the context of the research project COCkPiT [6].

Acknowledgments. This work was supported by the projects MoMaPC, financed by the
Free University of Bozen-Bolzano and by COCkPiT financed by the European Regional
Development Fund (ERDF) Investment for Growth and Jobs Programme 2014-2020.



16

References

1. van der Aalst, W.M.P., Artale, A., Montali, M., Tritini, S.: Object-Centric Behavioral Con-
straints: Integrating Data and Declarative Process Modelling. In: Description Logics (2017)

2. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative Workflows: Balancing Be-
tween Flexibility and Support. Computer Science-R&D 23(2) (2009)

3. van der Aalst, W., Stoffele, M., Wamelink, J.: Case Handling in Construction. Automation
in Construction 12(3), 303–320 (2003)

4. Build4Future Project. www.fraunhofer.it/en/focus/projects/build4future.html
5. Calvanese, D., De Giacomo, G., Montali, M.: Foundations of Data-Aware Process Analysis:

a Database Theory Perspective. In: PODS. ACM (2013)
6. COCkPiT: Collaborative Construction Process Management. www.cockpit-project.com/

7. Dallasega, P., Matt, D., Krause, D.: Design of the Building Execution Process in SME Con-
struction Networks . In: 2nd International Workshop DCEE (2013)

8. De Giacomo, G., De Masellis, R., Montali, M.: Reasoning on LTL on Finite Traces: Insen-
sitivity to Infiniteness. In: AAAI. AAAI Press (2014)

9. Dumas, M.: From Models to Data and Back: The Journey of the BPM Discipline and the
Tangled Road to BPM 2020. In: BPM. LNCS 9253, Springer (2015)

10. Forsythe, P., Sankaran, S., Biesenthal, C.: How Far Can BIM Reduce Information Asymme-
try in the Australian Construction Context? Project Management Journal 46(3) (2015)

11. Fortemps, P., Hapke, M.: On the Disjunctive Graph for Project Scheduling. Foundations of
Computing and Decision Sciences 22 (1997)

12. Frank, U.: Multilevel Modeling - Toward a New Paradigm of Conceptual Modeling and
Information Systems Design. Business & Information Systems Engineering 6(6) (2014)

13. Hickmott, S.L., Sardiña, S.: Optimality Properties of Planning Via Petri Net Unfolding: A
Formal Analysis. In: Proceedings of ICAPS (2009)

14. Kenley, R., Seppänen, O.: Location-Based Management for Construction: Planning,
Scheduling and Control. Routledge (2006)

15. KPMG International: Building a Technology Advantage. Harnessing the Potential of Tech-
nology to Improve the Performance of Major Projects. Global Construction Survey (2016)

16. Leitner, M., Mangler, J., Rinderle-Ma, S.: Definition and Enactment of Instance-Spanning
Process Constraints. In: Web Information Systems Engineering. LNCS 7651 (2012)

17. Lu, Y., Xu, X., Xu, J.: Development of a Hybrid Manufacturing Cloud. Journal of Manufac-
turing Systems 33(4) (2014)

18. Marengo, E., Dallasega, P., Montali, M., Nutt, W.: Towards a Graphical Language for Process
Modelling in Construction. In: CAiSE Forum 2016. CEUR Proceedings, vol. 1612 (2016)

19. Marengo, E., Dallasega, P., Montali, M., Nutt, W., Reifer, M.: Process Management in Con-
struction: Expansion of the Bolzano Hospital. In: Business Process Management Cases.
Springer (2018)

20. Perktold, M.: Processes in Construction: Modeling and Consistency Checking. Master’s
thesis, Free University of Bozen-Bolzano (2017), http://pro.unibz.it/library/thesis/
00012899S_33593.pdf

21. Perktold, M., Marengo, E., Nutt, W.: Construction process modeling prototype, http:

//bp-construction.inf.unibz.it:8080/ConstructionProcessModelling-beta

22. Shankar, A., Varghese, K.: Evaluation of Location Based Management System in the Con-
struction of Power Transmission and Distribution Projects. In: 30th International Symposium
on Automation and Robotics in Construction and Mining (2013)

www.fraunhofer.it/en/focus/projects/build4future.html
www.cockpit-project.com/
http://pro.unibz.it/library/thesis/00012899S_33593.pdf
http://pro.unibz.it/library/thesis/00012899S_33593.pdf
http://bp-construction.inf.unibz.it:8080/ConstructionProcessModelling-beta
http://bp-construction.inf.unibz.it:8080/ConstructionProcessModelling-beta

	Construction Process Modeling: Representing Activities, Items and their Interplay
	Introduction
	Related Work
	Multi-Instance and Item-Dependent Process Modeling
	Process Model
	A Formal Language for Constraint Specification

	Process Modeling for the Hotel Scenario
	Satisfiability Checking
	How to Check for Satisfiability
	An Implementation for Satisfiability Checking

	Conclusions and Future Work


