
Construction Process Modelling:  
Representing Activities, Items  

and their Interplay.
Elisa Marengo, Werner Nutt and Matthias Perktold
Faculty of Computer Science, Free University of Bolzano

BPM 2018

Construction Projects are “Rarely” On-Time/On-Budget

• Wembley National Stadium
• Commenced: 2002
• Planned Completion:  

 Early 2006
• Opened: March 2007
• Delay: 1 year
• Planned Cost: £757m
• Final Cost (approx.): £1bn
• Increased cost: 32%

http://www.globalconstructionreview.com/
1

http://www.globalconstructionreview.com/perspectives/centurys-most-troublesome-construction-pr8oje8ct8s/

Construction Projects are “Rarely” On-Time/On-Budget

• Berlin Airport
• Commenced: 2006
• Planned Completion: 2011
• Opened: ??? (2020)
• Delay: 9 Years
• Planned cost: €2bn
• Current Cost: €6bn
• Increased cost: 200%

https://www.economist.com/the-economist-explains/
2

https://www.economist.com/the-economist-explains/2017/01/25/why-berlins-new-airport-keeps-missing-its-opening-date

Why Are They Special?
In Construction
• Projects are one of a kind

(difficult to make estimates)

3

Why Are They Special?
In Construction
• Projects are one of a kind

(difficult to make estimates)
• Many companies are involved

3

Why Are They Special?
In Construction
• Projects are one of a kind

(difficult to make estimates)
• Many companies are involved
• Unpredictable events

3

Why Are They Special?
In Construction
• Projects are one of a kind

(difficult to make estimates)
• Many companies are involved
• Unpredictable events
• Projects are complex and long

4

Why Are They Special?
In Construction
• Projects are one of a kind

(difficult to make estimates)
• Many companies are involved
• Unpredictable events
• Projects are complex and long
• Shared resources/locations

3

Why Are They Special?
In Construction
• Projects are one of a kind

(difficult to make estimates)
• Many companies are involved
• Unpredictable events
• Projects are complex and long
• Shared resources/locations
• Changing requirements

3

Traditional Approach
• Planning:
• Define the activities,  

orders in which they occur
and milestones

• Scheduling:
• Define timetables

• Control:
• Detect deviations  

from the plan

4

Traditional Approach: Some Considerations

• Locations:

• Physical locations are not considered explicitly

• No location-based relationship between the activities

• Planning as Gantt Chart:

• Represent a commitment to a date

• Lack of flexibility: not clear what are the dependences

• Become outdated very soon

• Never updated

5

Tentative Solution
• Planning
• Decoupled from scheduling

• Define What and Where  
(not yet when)

• Collaborative modelling

6

Tentative Solution
• Planning
• Decoupled from scheduling

• Define What and Where  
(not yet when)

• Collaborative modelling

• Scheduling
• Define How and When

6

Tentative Solution
• Planning
• Decoupled from scheduling

• Define What and Where  
(not yet when)

• Collaborative modelling

• Scheduling
• Define How and When

• Control
• New requirements: Re-plan
• Delays: Re-schedule

6

Hospital of Bolzano

Elements in the model
• Tasks
• What: Activity
• Who: Craft
• Where: Locations
• How long: Productivity
• Notes Locations

Craft

Productivity

Activity

Notes

Z G W

T1 T2 *

2 5

LF - Lay Floor

2 5 FL#184

8

Elements in the model
• Tasks
• What: Activity
• Who: Craft
• Where: Locations
• How long: Productivity
• Notes

• Synchronisation
• Declarative precedences

Z G W

T1 T2 *

2 5

PW - Put Window

Z G W

T1 T2 *

2 5

LF - Lay Floor

2 5 FL 2 5 WI#185#184

9

Hidden Knowledge and Ambiguities

• Orderings  
 among the locations 
 (bottom to top, top to bottom)

Top to bottom

Z G W

f1 f2 *

2 5

Clean

C52

10

Hidden Knowledge and Ambiguities

• Orderings  
 among the locations 
 (bottom to top, top to bottom) 

• Precedence Scope  
(floor, activity, building)

Z G W

T1 T2 *

2 5

PW - Put Window

Proceed by floor
Z G W

T1 T2 *

2 5

LF - Lay Floor

2 5 FL 2 5 FL#185#184

10

Hidden Knowledge and Ambiguities

• Orderings  
 among the locations 
 (bottom to top, top to bottom) 

• Precedence Scope  
(floor, activity, building) 

• How to perform Loops

Z G W

T1 T2 *

2 5

CP - Conc. Pouring

Floor by floor
Z G W

T1 T2 *

2 5

IC - Inst. Scaffolding

6 1 BL 6 1 C#185#184

B1

1

B1

2

B1

3

B1

1

B1

2

B1

3

Floor by floor

10

How to Schedule?
• Preconditions for manual and automatic scheduling

• Represent explicitly the hidden knowledge

• Make the language non-ambiguous (Formal)

11

How to Schedule?
• Preconditions for manual and automatic scheduling

• Represent explicitly the hidden knowledge

• Make the language non-ambiguous (Formal)

• We extended the language  
(inspired by Declare)

• Provide a logic-based (LTLf) semantics

11

Customisable Building Representation

Level f1

Sector B1

Sector B2

Level f0

Level u1

Level f0

Level u1

Level f0

Room 1

Room 2

Room 3

Room 4

Bath
Room

Sector B2

Building

12

Customisable Building Representation

Level f1

Sector B1

Sector B2

Level f0

Level u1

Level f0

Level u1

Level f0

Room 1

Room 2

Room 3

Room 4

Bath
Room

Sector B2

Building

Sector
(sr)

Level
(l)

Section
(sn)

Unit
(u)

Attribute Hierarchy

B1, B2

u1,f0,f1
(u1<f0<f1)

r,b,c,e

1,2,3,4

Domain Values

12

Customisable Building Representation

Level f1

Sector B1

Sector B2

Level f0

Level u1

Level f0

Level u1

Level f0

Room 1

Room 2

Room 3

Room 4

Bath
Room

Sector B2

Building

Sector
(sr)

Level
(l)

Section
(sn)

Unit
(u)

Attribute Hierarchy

B1, B2

u1,f0,f1
(u1<f0<f1)

r,b,c,e

1,2,3,4

Domain Values

B2

u1

...

f0

b

1

r

1 ... 4

B1

u1

...

f0

b

1

r

1 ... 4

f1

...

Locations

12

Representation of Locations
• A building is abstractly

represented as a tree
• Locations in the tasks  

are subtrees

<B1,f1,r,*>
<B1,f1,b,*>

B2

u1

...

f0

b

1

r

1 ... 4

B1

u1

...

f1

b

1

r

1 ... 4

f2

...

Locations

13

Ordering Constraints
• Attribute domain values  

can be ordered
• Ascending and descending

ordering constraints

14

Exclusivity Constraints
• Once the task is started,  

 no other task can be  
 performed there

• By default:  
 exclusivity at the unit level

15

Precedences

• Precedences between activities

16

Precedences: Scope

• The Scope specialises the precedence  
 (e.g., precedence by <sector, level>)

• By default: Activity level

17

Precedences: Alternate Precedence

• Alternation between antecedent and consequent:
• antecedent before consequent
• and the antecedent has to wait for the consequent

18

Precedences: Chain Precedence

• Chain between two activities:
• no other activities can be performed in-between

19

Does my model make sense?

20

Does my model make sense?

• Is there an execution satisfying all the constraints?  
Satisfiability Check

20

Satisfiability Check

• Is checking for loops enough to determine Satisfiability?

21

Satisfiability Check

• Is checking for loops enough to determine Satisfiability?
• No,
• Consider also the dependencies, scopes and locations

21

How to Check Satisfiability?
• Our model has a logic based semantics (LTLf)

• We can apply model checking techniques

• We performed some experiments using NuSMV  
 (state-of-the-art model checker)

22

How to Check Satisfiability?

Model Tasks Dep. Loc. NuSMV

Sat. 8 9 312 2min 35s

Non-sat. 8 9 312 >1h

23

Other Way to Check Satisfiability?

• Translate a Diagram into a Task-Unit (TU) Graph

<A, B1-1>

<A, B1-2>
<B, B1-3> <C, B1-3>

24

Other Way to Check Satisfiability?

• Translate a Diagram into a Task-Unit (TU) Graph
• Translate the precedences into arrows between TU nodes

<A, B1-1>

<A, B1-2>
<B, B1-3> <C, B1-3>

24

Other Way to Check Satisfiability?

• Translate a Diagram into a Task-Unit (TU) Graph
• Translate the precedences into arrows between TU nodes
• Check for loops

<A, B1-1>

<A, B1-2>
<B, B1-3> <C, B1-3>

24

Disjunction in the TU Graph
• Some constraints introduce disjunction
• One has to check possible orientations

<A, B1-1>

<A, B1-2>
<B, B1-1> <C, B1-2>

25

Algorithm at a Glance
• Check for Cycles
• Cycles: If the graph contains a cycle then is not orientable

26

Algorithm at a Glance
• Check for Cycles
• Cycles: If the graph contains a cycle then is not orientable

• Deterministic Orientation
• Direct the undirected edges for which  

only one orientation is possible

26

Algorithm at a Glance
• Check for Cycles
• Cycles: If the graph contains a cycle then is not orientable

• Deterministic Orientation
• Direct the undirected edges for which  

only one orientation is possible
• Divide&Conquer
• Partition the graph so that:
• orientability can be checked for each subgraph
• by trying all orientations

26

Satisfiability Check
Model Tasks Dep. Loc. Nodes Arcs Edges NuSMV US

Sat. 8 9 312 236 9415 524 2min 35s 27 ms

Non-sat. 8 9 312 236 10003 521 >1h 5 ms

27

Satisfiability Check
Model Tasks Dep. Loc. Nodes Arcs Edges NuSMV US

Sat. 8 9 312 236 9415 524 2min 35s 27 ms

Non-sat. 8 9 312 236 10003 521 >1h 5 ms

Bigger 12 14 312
(2) 244 9435 574 >1h 10 ms

More
Edges 12 14 312

(47) 424 15131 1740 >1h 23 ms

27

Satisfiability Check
Model Tasks Dep. Nodes Arcs Edges US

Sat. 8 9 236 9415 524 27 ms

Non-sat. 8 9 236 10003 521 5 ms

Bigger 12 14 244 9435 574 10 ms

Adding
Locations 12 14 424 15131 1740 23 ms

Bigger 480 1291 16,960 1,436,759 678,680 55,866 ms 
(~1 min)

Bigger 720 2,526 25,440 3,082,925 1,526,820 379,409 ms
(~6.32 min)

Bigger 960 4,187 33,920 5,217,426 2,714,160 OOM

Summary
• Language Construction Process Modelling

• Graphical

• Declarative: Captures the constraints 
 (what and not how)

• Formal

• Effective algorithm to check satisfiability

• Demo: both are implemented in a proof-of-concept tool

29

Future Work

• COCkPiT:  
 Collaborative Construction Project managemenT

• Automatic Schedule:

• Optimised

• Incremental

• Align changes: Model Schedule

30

BPM 2018

Thank you
Elisa Marengo
Werner Nutt
Matthias Perktold
Free University of Bolzano

