BPM 2018

Construction Process Modelling: Representing Activities, Items and their Interplay.

Elisa Marengo, Werner Nutt and Matthias Perktold

Faculty of Computer Science, Free University of Bolzano

Construction Projects are "Rarely" On-Time/On-Budget

- Wembley National Stadium
 - Commenced: 2002
 - Planned Completion: Early 2006
 - Opened: March 2007
 - Delay: 1 year

efre · fesr

ol · Alto Adige

- Planned Cost: £757m
- Final Cost (approx.): £1bn
- Increased cost: 32%

Construction Projects are "Rarely" On-Time/On-Budget

- Berlin Airport
 - Commenced: 2006
 - Planned Completion: 2011
 - Opened: ??? (2020)
 - Delay: 9 Years
 - Planned cost: €2bn
 - Current Cost: €6bn
 - Increased cost: 200%

https://www.economist.com/the-economist-explains/

In Construction

• Projects are one of a kind (difficult to make estimates)

- Projects are one of a kind (difficult to make estimates)
- Many companies are involved

- Projects are one of a kind (difficult to make estimates)
- Many companies are involved
- Unpredictable events

- Projects are one of a kind (difficult to make estimates)
- Many companies are involved
- Unpredictable events
- Projects are complex and long

- Projects are one of a kind (difficult to make estimates)
- Many companies are involved
- Unpredictable events
- Projects are complex and long
- Shared resources/locations

- Projects are one of a kind (difficult to make estimates)
- Many companies are involved
- Unpredictable events
- Projects are complex and long
- Shared resources/locations
- Changing requirements

Traditional Approach

• Planning:

 Define the activities, orders in which they occur and milestones

• Scheduling:

Define timetables

• Control:

 Detect deviations from the plan

Traditional Approach: Some Considerations

• Locations:

- Physical locations are not considered explicitly
- No location-based relationship between the activities
- Planning as Gantt Chart:
 - Represent a commitment to a date
 - Lack of flexibility: not clear what are the dependences
 - Become outdated very soon
 - Never updated

Tentative Solution

6

- Planning
 - Decoupled from scheduling
 - Define What and Where (not yet when)
 - Collaborative modelling

Tentative Solution

6

- Planning
 - Decoupled from scheduling
 - Define What and Where (not yet when)
 - Collaborative modelling
- Scheduling
 - Define How and When

Tentative Solution

- Planning
 - Decoupled from scheduling
 - Define What and Where (not yet when)
 - Collaborative modelling
- Scheduling
 - Define How and When

efre fest elays: Re-schedule

- Control
 - New requirements: Re-plan

Hospital of Bolzano

efre · fess Südtirol · Alto Adige

Elements in the model

- Tasks
 - What: Activity
 - Who: Craft
 - Where: Locations
 - How long: Productivity
 - Notes

Elements in the model

- Tasks
 - What: Activity
 - Who: Craft
 - Where: Locations
 - How long: Productivity
 - Notes
- Synchronisation
 - Declarative precedences

Hidden Knowledge and Ambiguities

Orderings

among the locations (bottom to top, top to bottom)

#18	84	2		5	С
		С	le	ean	
•	Тс	op to	C	botton	n
Ζ	G	W			
f1	f2	*			

Hidden Knowledge and Ambiguities

Orderings

among the locations (bottom to top, top to bottom)

 Precedence Scope (floor, activity, building)

Hidden Knowledge and Ambiguities

Orderings

among the locations (bottom to top, top to bottom)

- Precedence Scope (floor, activity, building)
- How to perform Loops

How to Schedule?

- Preconditions for manual and automatic scheduling
 - Represent explicitly the hidden knowledge
 - Make the language non-ambiguous (Formal)

How to Schedule?

- Preconditions for manual and automatic scheduling
 - Represent explicitly the hidden knowledge
 - Make the language non-ambiguous (Formal)

- We extended the language (inspired by Declare)
- Provide a logic-based (LTLf) semantics

Customisable Building Representation

Customisable Building Representation

Customisable Building Representation

ALTO ADIGE

Representation of Locations

- A building is abstractly represented as a tree
- Locations in the tasks are subtrees

Ordering Constraints

- Attribute domain values can be ordered
- Ascending and descending ordering constraints

#148	1×1	20d	Sc				
S	SI - Scaffolding Installation						
< :	l↑	ex: l	JNIT				
B1 B1	B2						
f0 f1	fO						
	#148 S <: B1 B1 f0 f1	#148 1×1 SI - Sca Instal <: I↑ B1 B1 B2 f0 f1 f0	#148 1×1 20d SI - Scaffoldin Installation < : I↑ ex: L B1 B1 B2 f0 f1 f0				

Exclusivity Constraints

- Once the task is started, no other task can be performed there
- By default: exclusivity at the unit level

#143	1×6	10d	Di	
E	x - Exc	cavatio	on	
<: N	ONE	ex:	sr _	
B1 B2				
u1 u1				

Precedences

Precedences between activities

Precedences: Scope

- The Scope specialises the precedence (e.g., precedence by <sector, level>)
- By default: Activity level

Precedences: Alternate Precedence

- Alternation between antecedent and consequent:
 - antecedent before consequent
 - and the antecedent has to wait for the consequent

Precedences: Chain Precedence

- Chain between two activities:
 - no other activities can be performed in-between

Does my model make sense?

Does my model make sense?

Is there an execution satisfying all the constraints?
Satisfiability Check

Is checking for loops enough to determine Satisfiability?

- Is checking for loops enough to determine Satisfiability?
 - No,
 - Consider also the dependencies, scopes and locations

How to Check Satisfiability?

- Our model has a logic based semantics (LTLf)
- We can apply model checking techniques
- We performed some experiments using NuSMV (state-of-the-art model checker)

How to Check Satisfiability?

Model	Tasks	Dep.	Loc.	NuSMV
Sat.	8	9	312	2min 35s
Non-sat.	8	9	312	>1h

Other Way to Check Satisfiability?

Translate a Diagram into a Task-Unit (TU) Graph

efre · fesr

Südtirol · Alto Adige

AUTONOME PROVINZ BOZEN SÜDTIROL

Other Way to Check Satisfiability?

- Translate a Diagram into a Task-Unit (TU) Graph
- Translate the precedences into arrows between TU nodes

24

re · fesr

AUTONOMA DI BOLZANO

ALTO ADIGE

irol · Alto Adige

615

PROVINZ

Other Way to Check Satisfiability?

- Translate a Diagram into a Task-Unit (TU) Graph
- Translate the precedences into arrows between TU nodes
- Check for loops

ALTO ADIGE

Disjunction in the TU Graph

- Some constraints introduce disjunction
- One has to check possible orientations

Algorithm at a Glance

- Check for Cycles
 - Cycles: If the graph contains a cycle then is not orientable

Algorithm at a Glance

Check for Cycles

• Cycles: If the graph contains a cycle then is not orientable

• **Deterministic Orientation**

• Direct the undirected edges for which only one orientation is possible

Algorithm at a Glance

Check for Cycles

• Cycles: If the graph contains a cycle then is not orientable

• Deterministic Orientation

 Direct the undirected edges for which only one orientation is possible

Divide&Conquer

- Partition the graph so that:
 - orientability can be checked for each subgraph
 - by trying all orientations

	^
\sim	
	/
	\checkmark
	\sim

Model	Tasks	Dep.	Loc.	Nodes	Arcs	Edges	NuSMV	US
Sat.	8	9	312	236	9415	524	2min 35s	27 ms
Non-sat.	8	9	312	236	10003	521	>1h	5 ms

Model	Tasks	Dep.	Loc.	Nodes	Arcs	Edges	NuSMV	US
Sat.	8	9	312	236	9415	524	2min 35s	27 ms
Non-sat.	8	9	312	236	10003	521	>1h	5 ms
Bigger	12	14	312 (2)	244	9435	574	>1h	10 ms
More Edges	12	14	312 (47)	424	15131	1740	>1h	23 ms

	Model	Tasks	Dep.	Nodes	Arcs	Edges	US
	Sat.	8	9	236	9415	524	27 ms
\boldsymbol{i}	Non-sat.	8	9	236	10003	521	5 ms
$\boldsymbol{\mathbf{x}}$	Bigger	12	14	244	9435	574	10 ms
	Adding Locations	12	14	424	15131	1740	23 ms
	Bigger	480	1291	16,960	1,436,759	678,680	55,866 ms (~1 min)
	Bigger	720	2,526	25,440	3,082,925	1,526,820	379,409 ms (~6.32 min)
PROVINCIA DIBOLZANO	Bigger	960	4,187	33,920	5,217,426	2,714,160	OOM

efre Südtirol

> AUTONOME PROVINZ BOZEN SÜDTIROL

Summary

- Language Construction Process Modelling
 - Graphical
 - Declarative: Captures the constraints (what and not how)
 - Formal
- Effective algorithm to check satisfiability
- **Demo:** both are implemented in a proof-of-concept tool

Future Work

PROVINCIA

AUTONOMA

DI BOLZANO

AI TO ADIGE

- AUTONOME 615 COCkPiT: PROVIN7 • BOZEN SÜDTIROL Collaborative Construction Project managemenT
- Automatic Schedule:
 - Optimised
 - Incremental •
 - Align changes: Model

BPM 2018

Thank you

Elisa Marengo Werner Nutt Matthias Perktold *Free University of Bolzano*